Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/image001.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

   ïî÷àòîê | íîâèíè | ïðî ³íñòèòóò | ñòðóêòóðà | íàâ÷àííÿ | àäðåñè | ð³çíå

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/top_5x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

 

Îïèñàíèå: Íàö³îíàëüíà Àêàäåì³ÿ Íàóê Óêðà¿íè
Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: ̳í³ñòåðñòâî îñâ³òè ³ íàóêè Óêðà¿íè

 

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

                                                                                                                                        Ukr  Eng             Íàçàä

 

Features of the kinetics of methane desorption from coal to a storage vessel

 

V.A. Vasylkivskyi1*,

Institute for Physics of Mining Processes the National Academy Sciences of Ukraine, Dnipro, Ukraine

Corresponding author: e-mail: lod.vasylkivskyi@ukr.net

 

Physical and technical problems of mining production, 2020, (22), 5-18.

 

https://doi.org/10.37101/ftpgp22.01.001

full text (pdf)

 

ABSTRACT

 

Purpose. To study experimentally the effect of the volume of the tank on the accumulation of methane, the methane system parameters in the angle and the time of desorption recording on the kinetics of the movement of methane into the tank.

Methods. The volumetric method was used to study the process of desorption of methane from coal. A new method for analyzing experimental results was used, based on the idea of changing the characteristic relaxation time of desorption during methane emission.

Results. The kinetics of methane desorption into vessels of various volumes was determined. Based on the results obtained, the effect of vascular volume on the degree of coal degassing during desorption was revealed. A new method was developed to determine the residual gas content in coal, which is based on the idea of material balance. It was found that the dependence of the characteristic parameter on the desorption time τdes depends on the duration of the desorption process recording. It was experimentally established that for the same duration of desorption recording, the “characteristic time” of methane transport from coal does not depend on the volume of the vessel. It was found that the sensitivity of the residual gas content to the volume of the tank decreases with increasing volume. This is due to an increase in the solubility of the gas in coal as the pressure in the tank decreases. Information was obtained on the nature of the correlation between the desorption rate and the gas content of coal.

Originality. A discussion of the experimental results showed that for the same duration of recording desorption, the parameter “characteristic desorption time” does not depend on the volume of the vessel. An increase in the gas pressure in the reservoir during desorption affects the degree of invariance of the parameter τdes. It is shown that a change in the invariance τdes can be expected with a change in the diffusion activation energy. To identify it, information is needed on the progress of methane emission over the entire desorption time interval.

Practical value. The results of the study can be useful in diagnosing the gas content of coal seams in mine conditions and open up prospects for predicting gas-dynamic phenomena.

Practical implications. The results of the study can be useful in diagnosing the gas content of coal seams in mine conditions and open up prospects for predicting gas-dynamic phenomena.

 

Keywords: volumetric method, methane desorption, characteristic desorption time, sorption processes, gas content, diffusion, desorption kinetics, residual gas content, methane solubility in coal, activation energy

 

REFERENCES

 

1. J. Erundavo, Reza Rezaee. (2019).  Volumetric Measurements of Methane-Coal Adsorption and Desorption Isotherms-Effects of Equations of State and Implication for Initial Gas Reserves. Energies. 12(10):1–13. DOI: 10.3390/en12102022.

2. K. Czerw, A. Cwik, P. Baran, K. Zarebska. (2016). Kinetics of methane and carbon dioxide sorption and sorption–induced expansion of coal – kinetic equations assessment. DOI: 10.1051/e3scjnf/20161000012.

3. J. Ekundayo, R. Rezaee. (2019).Effect of Equation of States on High-Pressure Volumetric Measurements of Methane–Coal Sorption Isotherms—Part 1: Volumes of Free Space and Methane Adsorption Isotherms.  Energy Fuels, (33), 1029-1036. https://doi.org/10.1021/acs.energyfuels.8b04016

4. E. Battistutta, P. van Hemert, M. Lutynski, H. Bruining, K-H. Wolf. (2010). Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. Int. Journal of Coal Geology. 84, (1), P. 39-48. https://doi.org/10.1016/j.coal.2010.08.002

5. Taylakov O.V., Kormin A.N., Taylakov V.O. (2014). Opredeleniye ostatochnoy gazonosnosti ugol'nykh plastov na osnove makrokineticheskikh desorbtsionnykh protsessov fil'tratsii i diffuzii metana dlya otsenki effektivnosti degazatsii. Nauka i tekhnika v gazovoy promyshlennosti. (1). S. 10-13.

6. Feng, Y.Y.; Yang, W.; Chu, W. (2016). Coalbed methane adsorption and desorption characteristics related to coal particle size. Chin. Phys. B, (25), 068102. DOI: 10.1088/1674-1056/25/6/068102 

7. Vasil'kovskiy V.A. (2011). Kolichestvo metana na poverkhnosti uglya. Gornospasatel'noye delo, (48), 45-52.

8. Kim, H.J.; Shi, Y.; He, J.; Lee, H.H.; Lee, C.H. (2011). Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions. Chem. Eng. J., 171, 45–53.

https://doi.org/10.1016/j.cej.2011.03.035 

9. Zou, J.; Rezaee, R.; Liu, K. (2017). Effect of Temperature on Methane Adsorption in Shale Gas Reservoirs. Energy Fuels, (31), 12081–12092.  https://doi.org/10.1021/acs.energyfuels.7b02639

10. Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Denoyel, (2016). R. Surface excess amounts in high-pressure gas adsorption: Issues and benefits. Colloids Surf. A Physicochem. Eng. Asp., 496, 3–12.

https://doi.org/10.1016/j.colsurfa.2015.10.045 

11. Gasparik, M.; Ghanizadeh, A.; Bertier, P.; Gensterblum, Y.; Bouw, S.; Krooss, B.M. High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands. Energy Fuels 2012, 26, 4995–5004. https://doi.org/10.1021/ef300405g 

12. Vasil'kovskiy, V.A. & Ul'yanova, Ye.V. (2006). Nekotoryye aspekty interpretatsii kinetiki desorbtsii metana iz kamennogo uglya. Fiziko-tekhnicheskiye problemy gornogo proizvodstva, (9), 56-61. 

13. Gorban, A.N., Sargsyan, H.P. & Wahab, H.A. (2011).  Quasichemical Models of Multicomponent Nonlinear DiffusionMathematical Modelling of Natural Phenomenà, (5), 184 ‒262. 

14.  Vasil'kovskiy, V.A. (2019). Izmeneniye sorbtsionnykh svoystv ugley razrushennykh pod vozdeystviyem sdvigovykh napryazheniy Fiziko-tekhnicheskiye problemy gornogo proizvodstva, (19), 19 – 32. 

15. Alekseyev, A.D., Ul'yanova, Ye.V., Vasil'kovskiy, V.A. [i dr.]. (2010). Osobennosti struktury uglya vybrosoopasnykh zon. Gornyy informatsirnno-analiticheskiy byulleten', (8), 164-179.

16. Alekseyev A.D., Vasil'kovskiy V.A., Shazhko YA.V. (2007). O raspredelenii metana v kamennom ugle. Fiziko-tekhnicheskiye problemy gornogo proizvodstva, (10), 29-38.

 

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Design by ... ...