Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/image001.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

   початок | новини | про інститут | структура | навчання | адреси | різне

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/top_5x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

 

Описание: Національна Академія Наук України
Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: Міністерство освіти і науки України

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

                                                                                                                                        Ukr  Eng             Назад

 

Investigation of chimney subsidence over a salt mine

 

L.M.Zakharova1*, O.V.Chesnokova1, O.Y. Pidgurna2, V.V. Nazimko1,

1Institute for Physics of Mining Processes NAS, Dnipro, Ukraine

2 Donetsk National Technical University, Pokrovs’k, Ukraine

*Corresponding author: mila2017ma@gmail.com

 

Physical and technical problems of mining production, 2020, (22), 57-76.

 

https://doi.org/10.37101/ftpgp22.01.005

full text (pdf)

 

ABSTRACT

 

Purpose. Investigation of ground movement around an abandoned salt mine during sewage dissemination underground. Identification of dissipative structures during chimney subsidence initiation.

Methods. We used FLAC3D program package to simulate stress-strain redistribution and irreversible ground movement during the ground subsidence activation.

Findings. Initiation of ground movement mobilization started not from the surface but at a certain depth where the irreversible ground movement emerges. Laying and hanging wings of a geological fault became to move relatively each other over an abandoned salt mine. Dissipative structures emerged in form of abrupt intensive variation of cluster mosaic in the field of movement that follows the ground mobilization. Concord displacement of the adjacent ground clusters changes to their conflicting movement and vice versa. Such a periodical sequential shifting induces destruction of pillars and surrounding rock mass, disintegration of the fractured bodies and their asynchronous movement relatively each other and, as result, chimney subsidence initiation at the surface.

Originality. It was the first time when periodic cluster structures were registered during chimney subsidence activation. Dissipative structures manifest as shifting of irreversible torrents and rotors, which replace each other promoting progress of the irreversible ground movement and facilitating development of the chimney. Computer simulation assisted to understand complex irreversible behavior of ground during its irreversible movement triggered by change of physical properties of the ground under dampening. We proposed innovative measures for preventing development of dissipative structures.

Practical implications. The results of simulation allowed proposing effective measures, which are founded on restrictions of degree of freedom and suppress of the dissipative structures development.

Keywords: rock mass, irreversible ground movement, ground destruction, simulation, FLAC3D, dissipative structures.

 

REFERENCES

 

1. FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions, (2015). Itasca. 213p.

2. Galve, J.P., Remondo, J. & Gutiérrez, F. (2011). Improving sinkhole hazard models incorporating magnitude–frequency relationships and nearest neighbor analysis. Geomorphology, 134(1–2), 157-170.

3 Gutiérrez, F., Fabregat, I., Roqué, C., Carbonel, D. & Sevil, J. (2019). Sinkholes in hypogene versus epigene karst systems, illustrated with the hypogene gypsum karst of the Sant Miquel de Campmajor Valley, NE Spain. Geomorphology, 328, 57-78.

4. Karfakis, M. G. (1986). Chimney Subsidence - A Case Study. (University of Wyoming) Document IDARMA-86-0275The 27th U.S. Symposium on Rock Mechanics (USRMS), 23-25 June, Tuscaloosa, Alabama.

5. Kim, J.-W., Lu, Z., & Kaufmann, J. (2019). Evolution of sinkholes over Wink, Texas, observed by high-resolution optical and SAR imagery. Remote Sensing of Environment, 222, 119-132

6. Kondepudi, D,. & Prigogin, I. (2015). Modern thermodynamics: from heat engines to dissipative structures. Second edition. John Wiley & Sons, XXVI, 524.

7. Linares, R., Roqué, C., Gutiérrez, F., Zarroca, M., Fabregat, I. (2017). The impact of droughts and climate change on sinkhole occurrence. A case study from the evaporite karst of the Fluvia Valley, NE Spain. Science of The Total Environment, 579, 345-358.

8. Sahu, P., Lokhande,R.D. (2015). An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground Coal Mining. Procedia Earth and Planetary Science, 11, 63-75.

9. Salmi, E.F., Karakus, M., Nazem, M. (2019). Assessing the effects of rock mass gradual deterioration on the long-term stability of abandoned mine workings and the mechanisms of post-mining subsidence – A case study of Castle Fields mine. Tunnelling and Underground Space Technology, 88, 169-185.

10 Xia, K., Chen, C., Zheng, Y., Zhang, H., Yang, K. (2019). Engineering geology and ground collapse mechanism in the Chengchao Iron-ore Mine in China. Engineering Geology, 249, 129-147.

 

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Design by ... ...