Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/image001.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

   початок | новини | про інститут | структура | навчання | адреси | різне

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/top_5x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

 

Описание: Національна Академія Наук України
Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: Міністерство освіти і науки України

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

                                                                                                                                        Ukr  Eng             Назад

 

Selection of parameters for the development of mineral deposits

 

A.O. Khorolskyi*, V.G. Hrinov1

1Institute for Physics of Mining Processes the National Academy Sciences of Ukraine, Dnipro, Ukraine

1* Corresponding author: e-mail: khorolskiyaa@ukr.net

 

Physical and technical problems of mining production, 2020, (22), 118-140.

 

https://doi.org/10.37101/ftpgp22.01.009

full text (pdf)

 

ABSTRACT

 

Purpose. To develop a new approach to the effective development of mineral deposits by creating optimal design technology.

Methodology. To model the process of developing mineral deposits, a dynamic programming model is proposed that allows you to develop strategies for the optimal process of designing, developing, operating. To make decisions at the stage of parameter estimation, a decomposition approach is applied. For decision making, algorithms and methods of dynamic programming are proposed.

Findings. A new approach to the estimation and selection of parameters is presented, a characteristic feature of which is that the mineral itself is not considered “as a final product” that should be extracted, but only as an intermediate link in the structure of energy generation, metal smelting, etc. This allows us to consider operation process due to changes in stock status, which in turn forms a development strategy. The development strategy provides for the construction of scenarios (economic, environmental) within the framework of which a "narrow" task is solved related to the organization of work, cost optimization, etc.

Originality. For the first time, a mechanism is described for shaping the efficiency of field development, which provides for a hierarchical structure based on the category of “quality”, which in turn forms strategies; strategies form scenarios, and scenarios contain parameters; optimization of each parameter involves the assessment of priority control factors. For the first time, an algorithm has been proposed for the optimal design of development of a mineral deposit, which involves determining the volume of production, minimizing risks, determining parameters that meet the optimality criterion and their further optimization.

Practical implications. For the first time, methods and results of studies on the optimal design of the exploitation parameters of deposits of valuable minerals of Ukraine are proposed, which are the basis of the methodology for solving complex problems of optimizing the parameters of a mining and processing enterprise and correspond to the modern level of information technology.

Keywords:: rare and precious metals, opening of a deposit, dynamic programming, inventory status, algorithm, software, optimization, effective operation, anchored project, investment attractiveness

 

REFERENCES

 

1.                Grinev, V.G. (2008). Otsenka perspektiv povyisheniya effektivnosti polucheniya konechnoy produktsii iz uglya. Fiziko-tehnicheskie problemyi gornogo proizvodstva, (11), 126-135.

2.                Grinov, V.G., & Horolskiy, A.O. (2018). MozhlivostI efektivnogo osvoennya rudnih rodovisch iz zapasami ridkisnih i blagorodnih metaliv. Fiziko-tehnicheskie problemyi gornogo proizvodstva, (20), 113-122.

3.                Grin'ov, V.G., Horol's'kyj, A.O., & Kaliushhenko, O.P. (2019). Rozroblennja ekologichnyh scenarii'v efektyvnogo osvojennja cinnyh rodovyshh korysnyh kopalyn. Mineral'ni resursy Ukrai'ny, (2), 46-50.

4.                Kursunoglu, N., & Onder, M. (2015). Selection of an appropriate fan for an underground coal mine using the Analytic Hierarchy Process. Tunnelling and Underground Space Technology, (48), 101-109.

5.                Bogdanovic, D., Nikolic, D., & Ilic, I. (2012). Mining method selection by integrated AHP and PROMETHEE method. Anais da Academia Brasileira de Ciências, 84(1), 219-233.

6.                Iphar, M., & Alpay, S. (2019). A mobile application based on multi-criteria decision-making methods for underground mining method selection. International Journal of Mining, Reclamation and Environment. 33(7), 480-504.

7.                Hayati, M., Rajabzadeh, R., & Darabi, M. (2015). Determination of Optimal Block Size in Angouran Mine Using VIKOR Method. J. Mater. Environ. Sci. 6(11), 3236-3244.

8.                Huang, W. et al. (2015). Stability assessment of underground mined-out areas in a gold mine based on complex system theory. Geotechnical and Geological Engineering. 33(5), 1295-1305.

9.                Naghadehi, M.Z., Mikaeil, R., & Ataei, M. (2009). The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran. Expert Systems with Applications, 36(4), 8218-8226.

10.            Balusa, B.C., & Singam, J. (2018). Underground mining method selection using WPM and PROMETHEE. Journal of the Institution of Engineers (India): Series D. 99(1), 165-171.

11.            Krzak, M. (2013). The Evaluation Of An Ore Deposit Development Prospect Through Application Of The" Games Against Nature" Approach. Asia-Pacific Journal of Operational Research. 30(6), 1350029.

12.            Khorolskyi, A.O., & Hrinov, V.H., (2018). Proektuvannia tekhnolohichnykh skhem hirnychoho vyrobnytstva v umovakh nevyznachenosti. Fyzyko-tekhnycheskye problemy hornoho proyzvodstva, (20), 132-146.

13.            Lee, S., & Park, I. (2013). Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. Journal of environmental management. (127), 166-176.

14.            Hrinov, V. & Khorolskyi, A. (2018). Improving the Process of Coal Extraction Based on the Parameter Optimization of Mining Equipment. In E3S Web of Conferences, Ukrainian School of Mining Engineering. (Vol. 60. p. 00017). EDP Sciences. doi.org/10.1051/e3sconf/20186000017

15.            Kulshreshtha, M., & Parikh J.K. (2002). Study of efficiency and productivity growth in opencast and underground coal mining in India: a DEA analysis. Energy Economics. 24(5), 439-453.

16.            Li, P. et al. (2011). Time series prediction of mining subsidence based on a SVM. Mining Science and Technology (China). 21(4), 557-562.

17.            Bakhtavar, E., Shahriar, K., & Mirhassani, A. (2012). Optimization of the transition from open-pit to underground operation in combined mining using (0-1) integer programming. Journal of the Southern African Institute of Mining and Metallurgy. 112(12), 1059-1064.

18.            Erdogan, G. et al. (2017). Implementation and comparison of four stope boundary optimization algorithms in an existing underground mine. International Journal of Mining, Reclamation and Environment. 31(6), 389-403.

19.            Dimitrakopoulos, R., & Ramazan, S. (2008). Stochastic integer programming for optimising long term production schedules of open pit mines: methods, application and value of stochastic solutions. Mining Technology. 117(4), 155-160.

20.            Nazimko, V., Illiashov, M., & Youshkov, E. (2014). Соmputer-aided multy-object distributtion system for prompt project management. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 53.

21.            Beaulieu, M., & Gamache, M. (2006). An enumeration algorithm for solving the fleet management problem in underground mines. Computers & operations research. 33(6),1606-1624.

22.            Grynev, V.G., Yzakson, V.Ju., & Zubkov, V.P. (1999). Reshenye gornikh zadach na EVM pry osvoenyy rudnuh mestorozhdenyj. Novosybyrsk: Nauka, Sybyrskaja yzdatel'skaja fyrma RAN, 215 p.

23.            Mamaikin, O., Sotskov, V., Demchenko, Y., & Prykhorchuk, O. (2018). Productive flows control in coal mines under the condition of diversification of production. In E3S Web of Conferences (Vol. 60, p. 00008). EDP Sciences. doi.org/10.1051/e3sconf/20186000008

24.            Fomychov, V., Mamaikin, O., Demchenko, Y., Prykhorchuk, O., & Jarosz, J. (2018). Analysis of the efficiency of geomechanical model of mine working based on computational and field studies. Mining of Mineral Deposits, 12(4), 46–55. https://doi.org/10.15407/mining12.04.046

25.            Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., & Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24-38. https://doi:10.33271/mining13.01.024

26.            Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Mining Of Mineral Deposits, 231-235. http://dx.doi.org/10.1201/b16354-43

27.            Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecologic-and-technical aspects of iron-ore underground mining. Mining of mineral deposits, 11(2), 59-67 https://doi.org/10.15407/mining11.02.059

28.            Hrynev V.H., & Khorolskyi A.A. (2017). Obosnovanye parametrov vybora komplektatsii ochysnoho oborudovanyia s uchetom oblasty ratsyonalnoi ekspluatatsyy. Vesty Donetskoho hornoho instytuta, 1(40), 139–144. doi.org/10.31474/1999-981x-2017-1-139-144.

29.            Brazil, M. et al. (2005). Cost optimisation for underground mining networks. Optimization and engineering. 6(2), 241-256.

30.            Liu, Q., Li, X., & Meng, X. (2019). Effectiveness research on the multi-player evolutionary game of coal-mine safety regulation in China based on system dynamics. Safety science. (111), 224-233.

31.            Musingwini, C., Minnitt, R.C.A., & Woodhall, M. (2007). Technical operating flexibility in the analysis of mine layouts and schedules. Journal of the Southern African Institute of Mining and Metallurgy. 107(2), 129-136.

32.            Khorolskyi A.O., & Hrinov V.H. (2017). Systemni pryntsypy ta otsinochnyi kryterii nadiinosti pry optymizatsii tekhnolohichnykh skhem vuhilnykh rodovyshch. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu. Seriia: Tekhnichni nauky, 80(2), 199–207. https://doi.org/10.26642/tn-2017-2(80)-225-233.

33.            Salli, S., Pochepov, V., & Mamaykin, O. (2014). Theoretical aspects of the potential technological schemes evaluation and their susceptibility to innovations. In Progressive Technologies of Coal, Coalbed Methane, and Ores Mining (pp. 491-496).

34.            Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical processes during underground mining, 147-150.

35.            Grynev, V.G., Petrov, A.N., & Zubkov, V.P. (1994). Opredelenye oblasty proektyrovanyja effektyvnoj razrabotky rudnuh mestorozhdenyj Jakutyy. Gornoe delo v Arktyke, S.-Peterburg.

36.            Horolskiy, A.A., & Grinev, V.G. (2018). Proektirovanie tehnologicheskih shem ochistnogo oborudovaniya s ispolzovaniem setevyih modeley: opyit i perspektivyi. Gornaya mehanika i mashinostroenie, (4), 12-21.

37.            Hrinov, V.H., Khorolskyi, A.O., & Mamaikin, O.R. (2019). Dekompozytsiinyi pidkhid pry pobudovi system heneratsii enerhii u vuhlepromyslovykh rehionakh. Visti Donetskoho hirnychoho instytutu, (44), 116-126. doi.org/10.31474/1999-981x-2019-1-116-126

38.            Hrinov, V.H., Khorolskyi, A.O., & Mamaikin, O.R. (2019). Otsinka stanu ta optymizatsiia parametriv tekhnolohichnykh skhem vuhilnykh shakht. Visnyk Kryvorizkoho natsionalnoho universytetu, (48), 31-37. doi: 10.31721/2306-5451-2019-1-48-31-37

39.            Khorolskyi, A.O., Hrinov, V.H., Mamaikin, O.R. (2019). Optymizatsiia stiikosti funktsionuvannia pidsystem ochysnoho vyboiu. Suchasni resursoenerhozberihaiuchi tekhnolohii hirnychoho vyrobnytstva, (23), 85-103. doi: 10.30929/2074-1537.2019.1.85-103

40.            Khorolskyi A.O., & Hrinov V.H. (2017). Systemni pryntsypy ta otsinochnyi kryterii nadiinosti pry optymizatsii tekhnolohichnykh skhem vuhilnykh rodovyshch. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu. Seriia: Tekhnichni nauky, 80(2), 199–207. https://doi.org/10.26642/tn-2017-2(80)-225-233.

41.            Bellman, R., & Drejfus, S. (1965). Prykladnie zadachy dynamycheskogo programmyro-vanyja. M.: Nauka.

42.            Cargile, J. (1995). qualities. in Honderich, T. (Ed.) (2005). The Oxford Companion to Philosophy (2nd ed.). Oxford

43.            Mironova, I., & Pavlichenko, A. (2013). Analysis of air pollution levels during underground ore mining. Mining of Mineral Deposits, 7(3), 261-266. http://dx.doi.org/10.15407/mining07.03.261

44.            Mironova, I., & Borysovs’ka, O. (2014). Defining the parameters of the atmospheric air for iron ore mines. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 333-339. http://dx.doi.org/10.1201/b17547-57.

45.            Gorova, A., Kolesnyk, V., & Myronova, I. (2014). Increasing of environmental safety level during underground mining of iron ores. Mining of Mineral Deposits, 8(4), 473-479. http://dx.doi.org/10.15407/mining08.04.473

46.            Khomenko, O., Kononenko, M., Myronova, I., & Sudakov, A. (2018). Increasing ecological safety during underground mining of iron-ore deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 29-38. http://dx.doi.org/10.29202/nvngu/2018-2/3

47.            Khomenko, O., Kononenko, M., & Savchenko, M. (2018). Technology of underground mining of ore deposits. https://doi.org/10.33271/dut.001

48.            Hrinov, V.H., & Khorolskyi, A.O. (2019). Optymalne proektuvannia parametriv hirnychozbahachuvalnykh pidpryiemstv dlia ratsionalnoho osvoiennia tsinnykh rodovyshch Ukrainy. Fyzyko-tekhnycheskye problemy hornoho proyzvodstva, (21), 128-145. https://doi.org/10.37101/ftpgp21.01.008.

49.            Bellman, R. (1957). Dynamic Programming. Princeton University Press.

50.            Sckwarts, W. (1968). Dunamishes programmleriew erlautert am Belsplet der Optimierung Von Kupfergewinnungsverfahren. Erzmetall, (10), 455-460.

 

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Design by ... ...