Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/image001.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

   ïî÷àòîê | íîâèíè | ïðî ³íñòèòóò | ñòðóêòóðà | íàâ÷àííÿ | àäðåñè | ð³çíå

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/top_5x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

 

Îïèñàíèå: Íàö³îíàëüíà Àêàäåì³ÿ Íàóê Óêðà¿íè
Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: ̳í³ñòåðñòâî îñâ³òè ³ íàóêè Óêðà¿íè

 

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

                                                                                                                                        Ukr  Eng             Íàçàä

 

EFFECT OF WATER VAPOR ON THE PROCESS OF METHANE DESORPTION FROM COAL

 

L.I. Stefanovich1*, E.P. Feldman1, O.Yu. Mazur1

1Institute for Physics of Mining Processes of the National Academy of Sciences of Ukraine, Dnipro, Ukraine

*Corresponding author: e-mail: listef2591@gmail.com

 

Physical and technical problems of mining production, 2021, (23), 20-39.

 

https://doi.org/10.37101/ftpgp23.01.002

full text (pdf)

 

ABSTRACT

 

Purpose. To analyze theoretically the effect of water vapor on the desorption of methane from the surface of open voids of a coal sample.

Methods. Using Langmuir's assumptions: the monomolecularity of adsorption and the constancy of the heat of adsorption, the equations for the monomolecular adsorption of a binary mixture of gases: methane and water vapor are derived by methods of statistical physics.

Findings. The dependences of the degree of coverage of the adsorption layer with methane and water molecules are obtained in a situation when the partial pressure of water vapor changes linearly in the chamber where the coal sample is placed. Within the framework of the quasi-static approximation, the kinetics of desorption of methane molecules from the adsorption layer and the adsorption of water molecules is traced, if the process of moistening the sample in time proceeds according to a linear law and when it is described by a smooth step function. The situation corresponding to the process of methane adsorption in dry coal and in samples with different degrees of natural moisture is analyzed theoretically. It is shown that with an increase in moisture content, the process of methane adsorption on the surface of open cracks and pores slows down, and the amount of adsorbed methane decreases significantly.

Originality. It is shown that the main reason for the desorption of methane from open cracks and pores in moistened coal is the competition for sites due to the presence of a limited number of active adsorption centers and the difference in the binding energies of methane and water molecules with the coal surface.

Practical implications. The studies carried out allow us to conclude that the procedure for their moistening can be successfully applied for degassing coal seams.

Keywords: open cracks and pores, degree of coverage, activation centers, desorption of methane, adsorption of water molecules, binding energy, competition for places, quasi-static approximation

 

REFERENCES

 

1.  Kolikov K.S., Bobnev Yu.N. (2008). Obosnovaniye tekhnologii snizheniya gazovydeleniya ugol’nykh plastov na osnove povysheniya ikh ostatochnoy gazonosnosti pri uvlazhnenii. Gornyy informatsionno-analiticheskiy byulleten’, (4) 321–326.

2.  Pashchenkov P.N. (2017) Nagruzka na ochistnoy zaboy po gazovomu faktoru v zavisimosti ot vlazhnosti ugol’nogo plasta. Gornyy informatsionno-analiticheskiy byulleten’, (1) 396–403.

3.  Kovalyova I.B., Solovyova Ye.A. (2004). Vliyaniye vlazhnosti na kinetiku sorbtsii metana uglyami raznoy stadia metamorfizma. Gornyy informatsionno-analiticheskiy byulleten’, (8) 83–85.

4.  Zhang L., Ren T., Aziz N. (2014). Influences of temperature and moisture on coal sorption characteristics of a bituminous coal from the Sydney Basin, Australia. International Journal of Oil, Gas and Coal Technology, 8 (1), 62–78. https://doi.org/10.1504/IJOGCT/2014.064429

5.  Hao D., Lei Zhang L., Li M., Tu S. (2018). Experimental study of the moisture content influence on CH4 adsorption and deformation characteristics of cylindrical

bituminous coal core. Adsorption Science & Technology. 1–26. https://doi.org/10.1177/0263617418788444

6.  Guo H., Cheng Y., Wang L., Lu S., Jin K. (2015). Experimental study on the effect of moisture on low-rank coal adsorption characteristics. Journal of Natural Gas Science and Engineering, (24) 245–251. https://doi.org/10.1016/j.jngse.2015.03.037

7.  Nie B., Liu X., Yuan S., Ge B., Jia W., Wang C., Chen X. Sorption charachteristics of meth¬ane among various rank coals: impact of moisture. Adsorption. 2016. Vol. 22. No.3, apr.1, pp. 315–325. https://doi.org/10.1007/s10450-016-9778-9

8.  Wang L.,·Chen E, Liu S., et al. Experimental study on the effect of inherent moisture on hard coal adsorption-desorption characteristics. Adsorption. 2017. Vol. 23, No.5, pp. 723–742. https://doi.org/10.1007/s10450-017-9889-y

9.  Wang Z., Su W., Tang X., Wu J. (2018). Influence of water invasion on methane adsorption behavior. International Journal of Coal Geology. 1–23. https://doi.org/10.1016/j.coal.2018.08.004

10.  Yang Y., Lin L., Li M., Zhang X., Yang C., Wang Y., Fan B., Chen C., Luo W. (2019). A Multi-Scale Modeling of CH4 and H2O Adsorption on Coal Molecules and theWater Blocking Effect in Coalbed Methane Extraction. Applied Sciences, (9), 3421. 1–12. https://doi.org/10.3390/app9163421

11.  Tszin’syuan Kh., Yan’tszyun’ L., Ìàêàðîâà Ye.Yu., Bogomolov A.K., Chzhouchzhun Ya. (2019). Molekulyarnoye modelirovaniye konkuriruyushchey adsorbtsii metana i uglekislogo gaza v matritse uglya v prisutstvii vody. Khimiya tvyordogo topliva, (5) 20–29. https://doi.org/10.1021/acs.energyfuels.7b02898

12.  Landau, L.D., Lifshits, Ye.M. (1976). Teoreticheskaya fizika. V. 5, Part.1. Statisticheskaya fizika. Moskva, Nauka.

13.  Friend D., Ely J., and Ingham H. Thermophysical Properties of Methane. J. Phys. Chem. Ref. Data. (1989). https://doi.org/10.1063/1.555828

14.  Stull, R. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. (2017) 87.

15.  Vasilkovskyi, V., Minieiev, S., Kalugina, N. (2019) Bonding energy and methane amount at the open surfaceof metamorphic coal. Essays of Mining Science and Practice. Web of Conferences (109). https://doi.org/10.1051/e3sconf/201910900108

16.  Jenness, G.R.; Karalti, O.; Jordan, K.D. (2010). Benchmark Calculations of Water – Acene Interaction Energies: Extrapolation to the Water–Graphene Limit and Assessment of Dispersion–Corrected Dft Methods. Phys. Chem. Chem. Phys, (12) 6375–6381. https://doi.org/10.1039/c000988a

17.  Khodot, V.V. Vnezaonye vybrosy uglya i gaza. (1961). Moskva: Gosgortekhizdat, 64 s.

18.  Gragg, S., Sing, K. Adsorbtsiya, udel’naya poverkhnost’, poristost’. (1984). Moskva: Mir, 312 s.

19.  Vasyl’kovskiy, V.A., Stefanovich, L.I., Chesnokova, O.V. (2020). Vliyaniye yestestvennoy vlazhnosti na kharakternoye vremya desorbtsii metana iz ugley razlichnoy stepeni metamorfizma. Visti Donets’kogo girnychogo instytutu, 47 (2) 23–32.

 

 

 

 

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Design by ... ...