Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/image001.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

   початок | новини | про інститут | структура | навчання | адреси | різне

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/top_5x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

 

Описание: Національна Академія Наук України
Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: Міністерство освіти і науки України

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

                                                                                                                                        Ukr  Eng             Назад

 

SUBSTANTIATION OF THE MODEL FOR INVESTIGATION OF PARAMETERS OF PROTECTION OF MAIN SLOPE PRODUCTS IN UNLOADED MOUNTAIN PRESSURE ZONES

 

O.S. Yanzhula1, M.V. Golovin1, O.Y. Pidgurna1, V.V. Nazimko2, L.M. Zakharova2*, O.B. Kusen2

1PJSC “DonetsksteelIron and steel worksPokrovsk, Ukraine

2Institute for Physics of Mining Processes of the National Academy of Sciences of Ukraine, Dnipro, Ukraine

*Corresponding author: mila2017ma@gmail.com

 

Physical and technical problems of mining production, 2021, (23), 40-53.

 

https://doi.org/10.37101/ftpgp23.01.003

full text (pdf)

 

ABSTRACT

 

Purpose. Estimation of redistribution of rock pressure around the working formation.

Methods. During the project of planning mining works the data of mine instrumental observations of shifts around preparatory workings with the help of contour and depth benchmarks, monitoring of dynamics of growth of pressure of collapsed rocks and forged stratum on the bottom of the spent coal seam and final differences were used.

Findings. A computer model has been substantiated to simulate relevant parameters of panel extraction layout and determine technology of the main entries maintenance in the stress relief zone. The model was based on the final difference scheme. Mohr-Coulomb constitutive model has been selected to simulate nonlinear behavior of surrounding rock mass. Bulk and shear modulus were used to mimic elastic behavior of the rocks. To simulate irreversible actions of the rock mass, cohesion, angle of internal friction, tension limit and angle of dilation were employed as initial data. A special sub-model was developed to account for physical process of immediate roof and floor interaction behind the moving longwall. The depth of mining was 1100 m whereas the total height of the model was 1500 m, because 400 m undermined strata was accounted for. Therefore, top boundary of the model was free, lateral sides were constrained from the normal displacements, and bottom of the model was fixed.

Practical implications. Parameters of the model were verified by comparison of the abutment zone with that recommended by regulatory documents. Dynamic of ground pressure in the gob behind the moving longwall face was matched the results of the experimental monitoring of the caved strata pressure. Elastic resilience of the undermined strata was compared with measured in situ at the depth about one kilometer. Step of the main roof weighting was examined by comparison with measured in a real coal mine. The results of such verification demonstrated that parameters of the model were calibrated properly. This model is planned to involve in the process of examination of the mining layout at the prospective block 11 atPokrovs’kecoal mine, Ukraine, Donbass region.

Keywords: mining layout, ground pressure, stress relief, gate road , geomechanic model

 

REFERENCES

 

1. Solodyankin, O.V., Hryhoriev. O.Y., Dudka. I.V., Mashurka, S.V. (2017) Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 19–27.

2. Zorya N.M., Muzafarov F.I. (1966). Skhema mekhanizma sdvizheniya tolshchi porod pri vyyemke pologikh plastov uglya odinochnoy lavoy. Ugol' Ukrainy, (12), 9–12

3. Rudʹko H.I. (2011). Heoloho-ekonomichna otsinka rodovyshch korysnykh kopalyn. – K.: Vyd-vo «ADEF – Ukrayina». 384p.

4. Bouzeran L. et a. (2017). Eighth International Conference on Deep and High Stress Mining –J Wesseloo (ed.) Australian Centre for Geomechanics, Perth, 667–680, doi:10.36487/ACG_rep/1704_45_Bouzeran

5.  Bai Q. et al. (2017) International Journal of Coal Geology, 173, 176–199. http://dx.doi.org/10.1016/j.coal.2017.02.015

6.  Zhang N.C. et al. (2015). Int. J. Min. Reclam. Environ. https://doi:10.1080/17480930.2015.1024814.

7.  Kang, H. (2014). Support technologies for deep and complex roadways in underground coal mines: a review. International Journal of Coal Sciences Technology, 1(3), 261–277. https://doi 10.1007/s40789-014-0043-0

8. Lubosik, Z., Prusek, S., Wrana, A., & Walentek, A. (2015). Underground Measurement of Gateroad Stability at the Depth Around 1000m. 34th International Conference on Ground Control in Mining. Morgantown, WVU.

9. Ukazaniya po ratsional'nomu raspolozheniyu, okhrane i podderzhaniyu gornykh vyrabotok na ugol'nykh shakhtakh SSSR. – L. VNIMI, 1986.

10. FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions. Itasca Consulting Group, Inc. Version 3.10.F. (2008)

11. Zborshik M.P., Nazimko V.V. (1991). Okhrana vyrabotok glubokikh shakht v zonakh razgruzki: Monografiya. K.: Tekhnika, 248 s

12. Nazimko V.V., Peng S.S., Lapteev A.A., Alexandrov S.N., Sazhnev V.P. (1997) Damage mechanics around a tunnel due to incremental ground pressure. Int. J. Rock Mech. & Min. Sci. (Vol. 34, No. 3–4). ISSN 0148-9062, Paper No. 222 

13. Nazimko V.V., Babenko K.V. (2011) Proceedings of the 2nd International FLAC/DEM Symposium. February, 14–16, Melbourne, Australia.-Pp.85-92Use of FLAC3D for mining induced seismicity prediction

14. HSTU 101.00159226.001 – 2003. (2004) Pravyla pidrobky budivelʹ, sporud i pryrodnykh ob‘yektiv pry vydobuvanni vuhillya pidzemnym sposobom. – Vyd. ofits. – Minpalyvenerho Ukrayiny, 128 p.

15. Zakharova, L.M. (2017). Fizychni osnovy evolyutsiyi dysypatyvnykh struktur pid chas nezvorotnoho deformuvannya masyvu hirsʹkykh porid. Lambert Academic Publishing: Saarbrücken. – 245 c.

16. Instruktsiya po bezopasnomu vedeniyu gornykh rabot na plastakh, opasnykh po vnezapnym vybrosam uglya, porody i gaza. M. 1989.

17.  Nazimko V.V., Kuzyara S.V. Mekhanizm formirovaniya tselika lavami po smezhnym plastam. Ugol' Ukrainy

18. Prasad. M V. N. S., et al. (2020). An Algorithm for Evaluation of Mining Cycle Parameters and Analysis of Periodic Roof Weighting Using Monitored Longwall Shield Pressures and Shearer Location. Mining, Metallurgy & Exploration. https://doi.org/10.1007/s42461-020-00361-z

 

 

 

 

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Design by ... ...