Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/image001.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

   ïî÷àòîê | íîâèíè | ïðî ³íñòèòóò | ñòðóêòóðà | íàâ÷àííÿ | àäðåñè | ð³çíå

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/top_5x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

 

Îïèñàíèå: Íàö³îíàëüíà Àêàäåì³ÿ Íàóê Óêðà¿íè
Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: ̳í³ñòåðñòâî îñâ³òè ³ íàóêè Óêðà¿íè

 

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

                                                                                                                                        Ukr  Eng             Íàçàä

 

 

Geomechanical evaluation of the backfilling massif influence on the gate road stability while thin coal seam mining

M.V. Petlovanyi1*, D.S. Malashkevych1, K.S. Sai1

1Dnipro University of Technology, Dnipro, Ukraine

*Corresponding author: e-mail: petlyovany@ukr.net

 

Physical and technical problems of mining production, 2022, (24), 53-66.

 

https://doi.org/10.37101/ftpgp24.01.005

full text (pdf)

 

ABSTRACT

 

Purpose. The investigation of the influence formation rock backfilling massif into longwall gob area on the geomechanical situation of the rock massif around the gate road.

Methods. Numerical modeling using the finite element method by applying the SolidWorks software was used to achieve the goal. The geomechanical situation around the gate road which is reused, was studied under traditional mining technology with full roof collapse behind the longwall face with protective construction and mining technology with gob backfilling. The geomechanical assessment was provided based on the study of the vertical stress component.

Findings. The geomechanical models for the study of the stress state of the massif around the gate roads in the case of comparative variants of working out the coal seam are substantiated. The formation of the backfilling massif in comparison with the variants “full collapse + protective construction” significantly reduces the amount of tensile stresses in the roof of the gate road, tensile stresses in the floor of gate road, and the amount of stresses in the roof and floor above the protective construction was established. During the formation of the backfilling massif, the size of the unloading zone in the rocks of the roof and floor of the gate road and the size of the zone of compressive stresses in the rocks above and below the protective construction significantly increases to the level of the undisturbed massif was obtained.

Originality. The features of the nature of the distribution stresses in the rock massif under the formation of the rock backfilling are revealed, which indicates more favorable conditions for maintaining gate road behind the stope than the variant with full caving and the protective construction.

Paratactical implication. The formation of rock backfilling massif in the mined-out area makes it possible to reduce the intensity of rock pressure and keep the gate roads in a satisfactory condition for its reuse.

Keywords: gate road, geomechanical model, numerical modelling, stresses, rock massif, backfilling massif, full caving, protective construction

 

REFERENCES

 

1. Zhou, B., Yan, Y., Dai, H., Kang, J., Xie, X., & Pei, Z. (2022). Mining subsidence prediction model and parameters inversion in mountainous areas. Sustainability, 14(15), 9445. https://doi.org/10.3390/su14159445

2. Petlovanyi, M.V., Zubko, S.A., Popovych, V.V., & Sai, K.S. (2020). Physicochemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities. Voprosy Khimii i Khimicheskoi Tekhnologii, (6), 142-150. https://doi.org/10.32434/0321-4095-2020-133-6-142-150

3. Zhu, W., Xu, J., Xu, J., Chen, D., & Shi, J. (2017). Pier-column backfill mining technology for controlling surface subsidence. International Journal of Rock Mechanics and Mining Sciences, (96), 58-65. https://doi.org/10.1016/j.ijrmms.2017.04.014

4. Petlovanyi, M.V., & Haidai, O.A. (2017). Analiz nakopychennia i systematyzatsiia porodnykh vidvaliv vuhilnykh shakht, perspektyvy yikh rozrobky. Heotekhnichna mekhanika, (136), 147-158.

5. Ghirian, A., & Fall, M. (2017). Properties of cemented paste backfill. Paste Tailings Management, 59-109. https://doi.org/10.1007/978-3-319-39682-8_4

6. Kuzmenko O., & Petlovanyi, M. (2015). Substantiation the expediency of fine gridding of cementing material during backfill works. Mining of Mineral Deposits, 9(2), 183-190. https://doi.org/10.15407/mining09.02.183

7. Kuzmenko, A.M., Petlevanyy, M.V., & Usatyy, V.Yu. (2015). Tverdeyushchaya zakladka pri otrabotke rudnykh krutykh zalezhey v slozhnykh gorno-geologicheskikh usloviyakh. Dnepropetrovsk: Natsionalnyy gornyy universitet, 140 s.

8. Malashkevych, D.S., Petlovanyi, M.V., & Sai, K.S. (2021). Vyznachennia ratsionalnykh parametriv zve-dennia zakladnykh masyviv pry selektyvnii tekhnolohii vyimannia tonkykh vuhilnykh plastiv. Naukovi pratsi DonNTU. Seriia Hirnycho-heolohichna, 1(25)-2(26), 28-36. https://doi.org/10.31474/2073-9575-2021-1(25)-2(26)-28-36

9. Zhou, N., Zhang, J., Ouyang, S., Deng, X., Dong, C., & Du, E. (2020). Feasibility study and performance optimization of sand-based cemented paste backfill materials. Journal of Cleaner Production, (259), 120798. https://doi.org/10.1016/j.jclepro.2020.120798

10. Bondarenko, V.I., Kovalevska, I.A., Symanovych, H.A., Vivcharenko, O.V., Malykhin, O.V., & Husiev. O.S. (2014). Heomekhanika navantazhennia i rozrakhunok parametriv kripylnoi y okhoronnoi system pidhotov-chykh vyrobok shakht Zakhidnoho Donbasu. Dnipropetrovsk: LizunovPres, 228 s.

11. Solodiankin, O.V., Dudka, I.V., Tereshchuk, R.M., & Hryhor’iev, O.Ye. (2017). Okhorona pidhotovchykh vyro-bok, shcho vykorystovuiut povtorno, v umovakh antratsytovykh shakht. Dnipro: Natsionalnyi hirnychyi universytet, 161 s.

12. Hrinov, V.H., Khorolskyi, A.O., & Vynohradov. Yu.O. (2019). Tekhnolohichni aspekty sporudzhennia vyrobok u skladnykh hidroheolohichnykh umovakh. Heotekhnichna mekhanika, (149), 132-141.

13. Sakhno, I.G., Sakhno, S.V., & Kamenets, V.I. (2022). Stress environment around head entries with pillarless gobside entry retaining through numerical simulation incorporating the two type of filling wall. IOP Conference Series: Earth and Environmental Science, 1049(1), 012011. https://doi.org/10.1088/1755-1315/1049/1/012011

14. Kurnosov, S.A., Osenniy, V.Ya., Zaderiy, V.V., Tsikra, A.A., & Averkin, D.I. (2015). Issledovanie vliyaniya sposobov sooruzheniya betonnykh okoloshtrekovykh polos na ikh prochnostnye i deformatsionnye parametry. Heotekhnichna mekhanika, (122), 95-106.

15. Buzilo, V.I., Sulaev, V.I., Koshka, A.G., & Yavorskiy, A.V. (2013). Tekhnologiya otrabotki tonkikh plastov s zakladkoy vyrabotannogo prostranstva. Dnepropetrovsk: Natsional’nyy gornyy universitet, 124 s.

16. Petlovanyi, Ì.V., Ìalashkevych, D.S., & Sai, K.S. (2020). The new approach to creating progressive and low-waste mining technology for thin coal seams. Journal of Geology, Geography and Geoecology, 29(4), 765-775. https://doi.org/10.15421/112069

17. Malashkevych, D.S., Petolovanyi, M.V., & Poimanov, S.M. (2021). Sposib zakladky vyroblenoho pro-storu. Patent na korysnu model ¹ 147810.

18. Bondarenko, V., Kovalevska, I., Cawood, F., Husiev, O., Snihur, V., & Jimu, D. (2021). Development and testing of an algorithm for calculating the load on support of mine workings. Mining of Mineral Deposits, 15(1), 1-10. https://doi.org/10.33271/mining15.01.001

19. Petlovanyi, M.V., & Sai, K.S. (2021). Modeliuvannia napruzhenoho stanu zakladnoho masyvu pry riz-nykh fizyko-mekhanichnykh vlastyvostiakh. Visti Donetskoho hirnychoho instytutu, 1(48), 7-18. https://doi.org/10.31474/1999-981x-2021-1-7-18

20. Liu, H., Xiao, Y., Liu, K., Zhu, Y., & Zhang, P. (2022). Numerical simulation on backfilling of buried pipes using controlled low strength materials. Applied Sciences, 12(14), 6901. https://doi.org/10.3390/app12146901

21. Simanovich, A.M. (1973). Sovershenstvovanie sposobov okhrany podgotovitel’nykh vyrabotok. Do-netsk: Donbass, 121 s.

22. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.

23. Iordanov, I., Novikova, Y., Simonova, Y., Yefremov, O., Podkopayev, Y., & Korol, A. (2020). Experimental characteristics for deformation properties of backfill mass. Mining of Mineral Deposits, 14(3), 119-127. https://doi.org/10.33271/mining14.03.119

24. Petlovanyi, M., Malashkevych, D., Sai, K., Bulat, I., & Popovych, V. (2021). Granulometric composition research of mine rocks as a material for backfilling the mined-out area in coal mines. Mining of Mineral Deposits, 15(4), 122-129. https://doi.org/10.33271/mining15.04.122

 

 

 

 

 

 

 

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Îïèñàíèå: http://www.ifgp.dp.ua/pic/1x1.gif

Design by ... ...