Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Branch for Physics of Mining Processes of the M.S. Poliakov Institute of Geotechnical Mechanics

of the National Academy of Sciences of Ukraine

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

   початок | новини | про інститут | структура | навчання | адреси | різне

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/top_5x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

 

Описание: Національна Академія Наук України
Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: Міністерство освіти і науки України

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

                                                                                                                                        Ukr  Eng             Back

 

Analysis of risks and opportunities of safe use of the geothermal resource of flooded mines

D.V. Rudakov1, Yajun Sun2, O.V. Inkin3*,

1Dnipro University of Technology, Dnipro, Ukraine

2China University of Mining and Technology, Xuzhou, China

3Department of Physics of Mining Processes of the Institute of Geotechnical Mechanics named after M.S. Polyakov of the National Academy of Sciences of Ukraine, Dnipro, Ukraine

*Corresponding author: e-mail: inkin@ua.fm

 

Physical and technical problems of mining production, 2023, (25), 92-107.

 

https://doi.org/10.37101/ftpgv25.01.008

full text (pdf)

 

ABSTRACT

 

The purpose of this study is to make a comprehensive analysis of potential risks associated with the operation of geothermal systems of various types in flooded mines induced by mining-technical, hydrogeological, hydrochemical, and technical and economic factors.

Methodology includes the collection and analysis of data on geothermal, geochemical, flow and other properties of rocks and mine water, as well as mining-technical conditions for extracting minerals, which affect the operation of geothermal systems in flooded mines.

Results. We assessed the influence of the risks of different origins on the sustainability of geothermal system performance based on the real experiences of their operation in closed mines in different countries around the world. Risks associated with planning, placement, operation, and economic factors are systematized on the examples of the operation of dozens of geothermal systems in different countries of the world. A typical example shows how energy efficiency depends on the depth and COP based on a criterion defined as the ratio of thermal energy recovered to the thermal equivalent of electrical energy spent on the operation. Closed-loop systems can be relatively more energy efficient compared to open-loop systems, but due to lower thermal capacity, they may not be economically feasible.

Scientific novelty. Through an integrated approach, we estimated the positive and negative impacts of natural and man-made factors on the long-term operation efficiency of geothermal systems, depending on the method of mine water heat recovery, as well as the causes and mechanisms of potential risks that can threaten the sustainable operation of the systems.

Practical significance. The analysis made is necessary for comprehensive consideration and timely prevention of risks to be mandatorily included in feasibility studies of geothermal systems in flooded mines to ensure stable, long-term, and environmentally safe operation.

Keywords: Flooded mine, mine waters, geothermal systems, operation, risks

 

REFERENCES

 

1. Salekhiradzh S.Sh. (2014). Obgruntuvannia parametriv vykorystannia systemy vidboru heotermalnoi ener-hii v umovakh hlybokykh vuhilnykh shakht: Abstract of the dissertation of a candidate of technical sciences: 05.15.09. Donetsk, 25 s.

2. Dolinskyi A.A., Khalatov A.A. (2016). Heotermalna enerhetyka: vyrobnytstvo elektrychnoi i teplovoi enerhii. Visnyk NAN Ukrainy. № 11. S. 76-86.

3. The Future of Geothermal Energy in the 21 Century Impact of Enhanced Geothermal Systems (EGS) on the United States. Report : Massachusetts Institute of Technology, 2006. 372 p.

4. Rudakov, D., Inkin, O. (2022). A method to evaluate the performance of an open loop geothermal system for mine water heat recovery. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5-11. https://doi.org/10.33271/nvngu/2022-1/005

5. Rudakov D.V., Sadovenko I.O. (2006). Prognozuvannja gidrodynamichnogo rezhymu pry vidprac'ovu-vanni j zatoplenni shahtnogo polja. Visnyk ZhDTU, (1), 151-157.

6. Banks D., Athresh A., Al–Habaibeh A., Burnside N. (2019). Water from abandoned mines as a heat source: practical experiences of open– and closed–loop strategies, United Kingdom. Sustainable Water Resources Management. No 5. P. 29-50. https://doi.org/10.1007/s40899-017-0094-7

7. Ramos E., Breede K., Falcone G. (2015). Geothermal heat recovery from abandoned mines: a systematic review of projects implemented worldwide and a methodology for screening new projects. Environmental Earth Sciences. Vol. 73, P. 6783-6795.

https://doi.org/10.1007/s12665-015-4285-y

8. Walls D.B., Banks D., Boyce A.J., Burnside N.M. (2021). A review of the performance of minewater heating and cooling systems. Energies, 14, 6215. https://doi.org/10.3390/en14196215

9. Oliinichenko V.H. (2016). Analiz tekhnichnykh vymoh do teplotras heotermalnoho teplopostachannia. Vidnovliuvana enerhetyka. № 2. S. 65–72.

10. Michel A.F. (2009). Utilization of Abandoned Mine Workings for Thermal Energy Storage in Canada. In Proceedings of the Effstock conference, Stockholm, Sweden.

11. Brabham P., Manju M., Thomas H., Farr G., Francis R., Sahid R., Sadasivam S. (2020). The potential use of mine water for a district heating scheme at Caerau, Upper Llynfi valley, South Wales, UK. Q. J. Eng. Geol. Hydrogeol., 53, 145. https://doi.org/10.1144/qjegh2018-213

12. Banks D. (2021). Fessing up: Risks and obstacles to mine water geothermal energy. In Proceedings of the Mine Water Heating and Cooling; A 21st Century Resource for Decarbonisation. Available online: https://www.researchgate.net/publication/
351450683_’Fessing_up_Risks_and_obstacles_to_mine_water_geothermal_energy
(accessed on 20 September 2023).

13. Dolyna L.F. (2000). Stichni vody pidpryiemstv hirnychoi promyslovosti ta metody yikh ochyshchennia. D.: Molodizhna ekolohichna liha Prydniprovia, 61 s.

14. Adams C., Monaghan A., Gluyas J. (2019). Mining for heat. Geoscientist. № 29, Р. 10-15.

15. Steven J. (2021). From Venture Pit to Walker Shore, coal and heat and fathoms of core: Mine water Heat Exploitation in Newcastle/Gateshead. In Proceedings of the 2021 Mine Water Geothermal Energy Symposium, “Mine Water Heating and Cooling – A 21st Century Resource for Decarbonisation”, Webinar.

16. Rudakov D., Sun Y., Inkin O. (2023). Optimization of mine water discharge with the river hydrograph. Case study Samara River in Western Donbas. V International Conference «Essays of Mining Science and Practice».

17. Rudakov D., Inkin O. (2022). Validation of the operation efficiency criteria for geothermal probes in flooded mine workings. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, № 5, p. 100-105. https://doi.org/10.33271/nvngu/20215/100

 

 

 

 

 

 

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Описание: http://www.ifgp.dp.ua/pic/1x1.gif

Design by ... ...